Cyclobuta[1,2-c:3,4-c']dithiophene

Michael K. Shepherd

Department of Pharmacology, University of Bristol, Bristol BS8 1TD, U.K.

Dithieno[3,4-c:3',4'-e]pyridazine N-oxide (7) has been synthesised in five steps from 3-iodothiophene-2-carbaldehyde; flash vacuum thermolysis of (7) gave the stable title compound (1).

Cyclobuta[1,2-c:3,4-c']dithiophene (1) is predicted to be the most stable of the four isomeric dithia-analogues of biphenylene.¹ Despite numerous attempts to prepare (1) and its derivatives,¹—⁴ only one successful approach to this strained system has been reported.⁵ Garratt and Neoh isolated the tetraphenyl derivative (2) from the reaction of cis,trans,cistetrabenzoylcyclobutane with P₂S₅. The phenyl substituents prevented an assessment of the paramagnetic contribution from the cyclobutadienoid ring, but the u.v. spectrum suggested some interaction between the two heterocyclic rings. Benzo[3,4]cyclobuta[1,2-b]thiophene⁶ and a derivative⁷ have recently been prepared by flash vacuum thermolysis; this method is here extended to the synthesis of the title compound (1).

Nitration of 3-iodothiophene-2-carbaldehyde (H_2SO_4 , HNO_3 , CH_2Cl_2 ; 0 °C) gave the 4-nitro derivative (3),† m.p. 120-121 °C (37%); δ_H (CDCl₃) 8.76 (5-H, d) and 9.94 (CHO, d), J 1.5 Hz. Oxidation of (3) (CrO₃, HOAc; 75 °C) gave the corresponding acid (4), m.p. 204-205 °C (73%); δ_H (CD₃COCD₃) 8.91 (5-H, s) and 11.2 (CO₂H, br.). Treatment of (4) with mercury(II) acetate (HgO, HOAc; 100 °C) followed by hydrolysis (H₂O, HCl, NaCl; 100 °C) gave 3-iodo-4-nitrothiophene (5), m.p. 65-67 °C (79%); δ_H (CDCl₃) 7.59 (2-H, d) and 8.33 (5-H, d), J 3.8 Hz. A conventional Ullmann coupling of (5) was unsuccessful, but under the conditions of Cornforth et al.8 (MeCN, Me₂CO, aq. NH₃, Cu, CuSO₄; 25 °C) (5) formed 4,4'-dinitro-3,3'-bithienyl (6), m.p. 224-225 °C (86%); δ_H (CDCl₃) 7.30 (2-,2'-H, d) and 8.45 (5-,5'-H,d), J 3.9 Hz. Cyclisation of (6) (C₆H₆, H₂O, Li₂S,

12-crown-4) gave dithieno[3,4-c:3',4'-e]pyridazine N-oxide

S R R
$$O_2N$$
 I I (1) R = H (3) R = CHO (2) R = Ph (4) R = CO₂H (5) R = H I (5) R = H I (6) I (8)

⁽⁷⁾ as yellow crystals which decomposed sharply at 180 °C (sublimed >130 °C) (25%); $\delta_{\rm H}$ (CDCl₃) 7.76 (1-H, d), 7.81 (8-H, d), 7.83 (3-H, d), and 8.44 (6-H, d), $J_{1.3}$ 3.2, $J_{6.8}$ 3.3 Hz. Attempted chemical reduction of either (6) or the *N*-oxide (7) to the dithienopyridazine (8) failed, but thermolysis‡ of (7) at 800 °C gave (8) as an air-sensitive yellow solid which decomposed above 140 °C (sublimed >110 °C) (22%); $\delta_{\rm H}$ (CDCl₃) 7.79 (1-, 8-H, d) and 8.63 (3-, 6-H, d), J 3.1 Hz. Isolation of (8) is unnecessary, and thermolysis of (7) at 850 °C gave cyclobuta[1,2-c:3,4-c']dithiophene (1) as colourless

[†] New compounds gave satisfactory microanalytical and/or spectroscopic data.

[‡] Extrusion reactions were performed using a 1 metre silica tube at 0.005 mmHg. The apparatus was kindly made available by Dr. J. W. Barton, Department of Chemistry, University of Bristol.

crystals, m.p. 120—121 °C (4%); $\delta_{\rm H}$ (CDCl₃) 6.65, (C₆D₆) 6.10, $\delta_{\rm C}$ (CDCl₃) 111.7 and 141.9 (quaternary); $\lambda_{\rm max.}$ (EtOH) 231 (log ϵ 4.42), 318 (4.40), and 334 nm (4.41); m/z (%): 164 (M^+ , 100) and 120 (M^+ – CS, 50).

The u.v. spectrum of (1) resembles that of biphenylene, but shows a pronounced hypsochromic shift. A smaller effect has been observed in the spectrum of benzo[3,4]cyclobuta-[1,2-c]thiophene.⁹ This, in conjunction with the high-field shift of the ¹H n.m.r. spectrum, provides convincing evidence for conjugation between the two thiophene rings, and the associated presence of a paramagnetic current in the central cyclobutadienoid ring.

Received, 12th March 1985; Com. 326

References

- 1 B. E. Ayres, S. W. Longworth, and J. F. W. McOmie, *Tetrahedron*, 1975, **31**, 1755.
- 2 H. Wynberg, Acc. Chem. Res., 1971, 4, 65.
- 3 M. P. David and J. F. W. McOmie, Tetrahedron Lett., 1973, 1361.
- 4 J. Skramstad and B. Smedsrud, Acta Chem. Scand., Ser. B, 1977, 31, 625.
- 5 P. J. Garratt and Soon Bin Neoh, J. Org. Chem., 1975, 40, 970.
- 6 J. W. Barton and D. J. Lapham, Tetrahedron Lett., 1979, 3571.
- 7 Mei Ling Leow and J. A. H. MacBride, Tetrahedron Lett., 1984, 25, 4283.
- 8 J. Cornforth, D. D. Ridley, A. F. Sierakowski, D. Uguen, and T. W. Wallace, J. Chem. Soc., Perkin Trans. 1, 1982, 2317.
- P. J. Garratt and K. P. C. Vollhardt, J. Am. Chem. Soc., 1972, 94, 7087.